If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+3y-5=0
a = 3; b = 3; c = -5;
Δ = b2-4ac
Δ = 32-4·3·(-5)
Δ = 69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{69}}{2*3}=\frac{-3-\sqrt{69}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{69}}{2*3}=\frac{-3+\sqrt{69}}{6} $
| 1.25x^2-8x-16=0 | | (8+y)/y=7/5 | | (5÷4)x^2-8x-16=0 | | 25x-4=40x+5 | | 5x2+16x-96=0 | | 2x/8=36 | | x^2-10x+16/x^2-12=24=2/3 | | x^2-10x16/x^2-12x24=2/3 | | -p=26.19 | | 15n^2+25n+270=0 | | 5−x2−−−−−√+x−1=0 | | x²+25x-200=0 | | 30x+-6=9 | | 6x−19=≥5 | | 2(1+p)+3(4+p)=5 | | 6(2h+3)+5(h-3)=9 | | 6-2x-4=6x+18 | | X^2-4x^2+1=0 | | 6(2x-5=4x+2 | | 10x-18=6x+11 | | 7x+6/3-9=12 | | x=8^2*4*16-4^2 | | x=8^24*16-4^2 | | 0.6r=1.8 | | x+0.2x=83 | | x=6x12+6 | | x=1/2x12x(12+6) | | x=1/2x12(12+6) | | x^2+17x-25=0 | | x^2+17-25=0 | | 2y-(-1/2)=-1/3 | | 4(x+15)=x+6 |